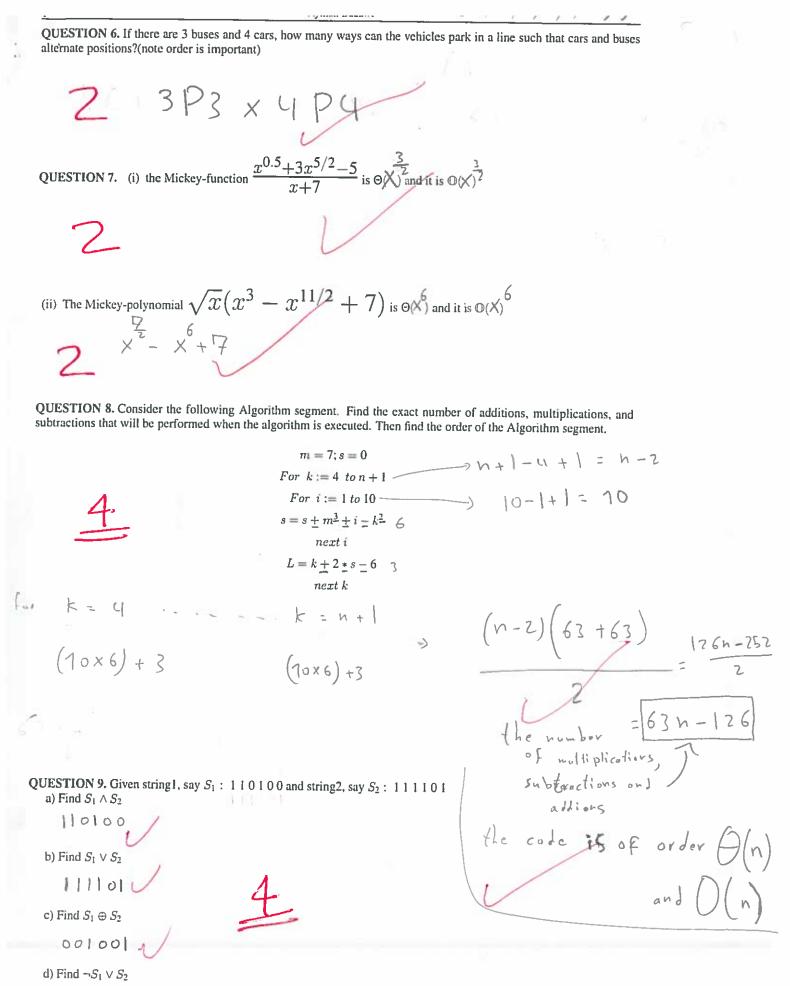
Exam II: Discrete Math, MTH 213, Fall 2017

Ayman Badawi

M. Said (Perfect score, second time in a row)

QUESTION 1. Assume there are 550 persons in the main building of AUS. Then


•
(i) There are at least n persons who were born in the same month and on the same day of the week. What is the
maximum value of n that we all are sure about?
orto R it's an onto function where IRICIDI and we
2 (ii) There must exist a day of the week such that no more than m persons were born on that day, what is the maximum value of m? (hint: THINK! not difficult)
(ii) There must exist a day of the week much that we made the week at least n = 1 34 = 7 persons
(ii) There must exist a day of the week such that no more than m persons were born on that day, what is the maximum value of m?(hint: THINK! not difficult)
work 11
2 week the we can have m=550 Persons who were born on that day.
QUESTION 2. (i) 26 distinct numbers were chosen randomly. Then there are at least n numbers out of the chosen
numbers that have the same unit digit. What is the maximum value of n that we all are sure about?
homoers that have the same differ. What is the maximum value of n that we all are sure about?
onto 2) it's an onto function where RICIDI and assuring
2 it's an onto function where RICIDI shot assuring fave shaving) by pigeon hole principle we have at least
(ii) Assume 302 persons were in a party. Assume that the party started at 8pm and it ended at 2am. Then there are at
least n persons in the party of the same sex. Find the maximum value of n that we all are sure about? (Hint: Smile!)
onto (1) it's anonto sometion where RICIDI \ that have
2 1 onto
QUESTION 3. We have 7 holes labeled from 1 to 7 and we have 4 balls (red, blue, green, yellow). We need to put each Persons of the ball in one hole. Find all possible ways?
QUESTION 3. We have 7 holes labeled from 1 to 7 and we have 4 balls (red, blue, green, yellow). We need to put each
ball in one hole. Find all possible ways?
Tome sex
Z+C4x4P4

QUESTION 4. An electrical panel has six switches. How many ways can the switches be positioned up or down if four switches must be up and 2 switches must be down. (note order not important)

2 6 C 4 x 2 C2

QUESTION 5. How many 4-digit even numbers greater than 400 can be formed using the digits 1, 2, 3, 4, 5, and 6?

 $\frac{2}{X} = \frac{x_1}{X_2} \frac{x_2}{X_3} \frac{x_4}{X_4}$ $\frac{2}{3} = \frac{1}{3} = \frac{1}{3$

75, = 001011 V 111101

5,	Sz	53	$(s_2 \longrightarrow s_3)$	(5, 175z)	$(s_1 \land s_3)$	$S_1 \setminus \left(S_2 \rightarrow I_3\right)$	(5, 175z)
0	0	0	1	0	0	0	0
٥	٥	1 1	i	ð	0	0	1 0
0	(101	Ö	0			0
0	1	111	١ ١	O		1 . 0	1
1	0	10		1		l .	
,			1	1	9	\	
1	0	(1		
\	1 1		0		0	0	
<i>-</i>		0	1	0			
1	1	1 1					
HESTIO	N 11 Given a	sequence II	l∞ where h = 2 l	$b_1 = 2$, and $b_n = 6b_{n-1}$	6, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		

QUESTION 12. Write down T or F

- (i) If $\exists x \in N^*$ such that x + 4 = 3, then $x^2 + 2 = 20$
- (ii) If $\exists x \in R$ such that $x^2 + 4 = 8$, then x 2 = 0
- (iii) If every rectangle is a square, then every ellipse is a circle. T

QUESTION 13. (i) Is the sequence 3, 3, 3, 3 a graphical? If yes, then draw such graph, and then find the girth and the diameter of the graph.

3 3 3 3 = 222 = 11 =) I this sequence is graphical

yellow a girth = 3, diam = 1

(ii) Is the sequence 5, 4, 4, 4, 4, 4 a graphical? If yes, then find number of all edges of such graph.

3 5 4 4 4 4 5 3 3 3 3 3 3 3 3 2 2 2 2 = 111 = 10 = -1 => this sequence is not graphical

QUESTION 14. Let D be a graph with vertex set $\{0, 1, 2, ..., 8\}$. Assume that every two distinct vertices, say x, y, are connected by an edge if and only if $3 \mid (x+y)$ (i.e., 3 is a factor of x+y). By drawing such graph, convince me that D is disconnected. Convince me that D consists of two components, one component is K_m for some n and the other component is $K_{n,n}$ for some n. Find the values of m and n.

3: 0-3, 1-2 6: 0-6, 1-5, 2-4 9: 1-8, 2-7, 3-6, 4-5 12: 4-8, 5-7 15: 7-8 $k_{3} = n=3$

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com